Anneau noethérienEn mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.
Foncteur HomEn mathématiques, le foncteur Hom est un foncteur associé aux morphismes de la catégorie des ensembles. Il est central en théorie des catégories, notamment du fait de son rôle dans le lemme de Yoneda et parce qu'il permet de définir le foncteur Ext. Soit une catégorie localement petite. Pour tout couple d'objets A et B dans cette catégorie, un morphisme induit une fonction pour tout objet X.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
NoethérienEn mathématiques, l'adjectif « noethérien » est utilisé pour décrire des objets vérifiant la condition de chaîne ascendante ou descendante sur un certain type de sous-objets ; en particulier : un groupe qui vérifie la condition de chaîne ascendante sur les sous-groupes ; Anneau noethérien, un anneau qui vérifie la condition de chaîne ascendante sur les idéaux ; Module noethérien, un module qui vérifie la condition de chaîne ascendante sur les sous-modules ; Espace noethérien, un espace topologique qui vérif
Foncteur exactEn mathématiques, un foncteur exact est un foncteur qui commute aux limites inductives et projectives. De manière équivalente, c'est un foncteur qui préserve les suites exactes de catégories abéliennes et c'est de cela que vient la dénomination. Des foncteurs de ce type apparaissent naturellement en homologie et d'une manière générale en théorie des catégories, où leurs propriétés permettent des calculs élégants. Le « défaut d'exactitude » est mesuré par les foncteurs dérivés, par exemple les foncteurs Tor et Ext.
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Ensemble finiEn mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Lemme de YonedaEn théorie des catégories, le lemme de Yoneda, attribué au mathématicien japonais Nobuo Yoneda, est un théorème de plongement d'une catégorie localement petite dans une catégorie de foncteurs : les objets de sont identifiés aux foncteurs représentables, et les morphismes de à toutes les transformations naturelles entre ces foncteurs. C'est une vaste généralisation du théorème de Cayley pour les groupes (vus comme des petites catégories à un seul objet).
Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
D-moduleEn mathématiques, un D-module est un module sur un anneau D d'opérateurs différentiels. L'intérêt principal des D-modules réside en son utilisation dans l'étude d'équations aux dérivées partielles. La théorie générale des D-modules nécessite une variété algébrique lisse X définie sur un corps K algébriquement clos de caractéristique nulle, par exemple K = C. Le faisceau des opérateurs différentiels DX est défini comme la OX-algèbre générée par les champs de vecteurs sur X, interprétés comme des dérivations.