Boîte quantiqueUne boîte quantique ou point quantique, aussi connu sous son appellation anglophone de quantum dot, est une nanostructure de semi-conducteurs. De par sa taille et ses caractéristiques, elle se comporte comme un puits de potentiel qui confine les électrons (et les trous) dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons (longueur d'onde de De Broglie), soit quelques dizaines de nanomètres dans un semi-conducteur.
Quantum dot displayA quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut.
Quantum dot solar cellA quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s).
NanofilUn nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Puits quantiqueUn puits quantique est une zone de l'espace dans laquelle le potentiel ressenti par une particule quantique atteint un minimum. Il s'agit d'un puits de potentiel dont les petites dimensions entraînent une différence entre les prédictions de la mécanique classique et celles de la mécanique quantique. L'équation de Schrödinger prévoit en effet que l'énergie de la particule évoluant dans un tel puits est quantifiée. L'étude de puits quantiques de forme variée (puits carré, puits harmonique, couplage entre deux puits voisins.
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.
Intrication quantiqueEn mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.
Épitaxie en phase vapeur aux organométalliquesL'épitaxie en phase vapeur aux organométalliques (EPVOM, aussi connue sous les acronymes anglophones MOVPE — metalorganic vapor phase epitaxy ou MOCVD — metalorganic chemical vapor deposition, terme plus général) est une technique de croissance cristalline dans laquelle les éléments à déposer, sous forme d'organométalliques ou d'hydrures, sont amenés vers le substrat monocristallin par un gaz vecteur. Cette technique de croissance est particulièrement prisée dans l'industrie des semi-conducteurs III-V en raison de la bonne reproductibilité et des fortes vitesses de croissance accessibles.