Massey productIn algebraic topology, the Massey product is a cohomology operation of higher order introduced in , which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist. Let be elements of the cohomology algebra of a differential graded algebra . If , the Massey product is a subset of , where . The Massey product is defined algebraically, by lifting the elements to equivalence classes of elements of , taking the Massey products of these, and then pushing down to cohomology.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Dagger symmetric monoidal categoryIn the mathematical field of , a dagger symmetric monoidal category is a that also possesses a . That is, this category comes equipped not only with a tensor product in the sense but also with a , which is used to describe unitary morphisms and self-adjoint morphisms in : abstract analogues of those found in FdHilb, the . This type of was introduced by Peter Selinger as an intermediate structure between and the that are used in categorical quantum mechanics, an area that now also considers dagger symmetric monoidal categories when dealing with infinite-dimensional quantum mechanical concepts.
Highly structured ring spectrumIn mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory. Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
2-catégorieEn mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories.
Friedrich HirzebruchFriedrich Ernst Peter Hirzebruch est un mathématicien allemand né le à Hamm et décédé le à Bonn. Il est notamment connu pour ses travaux sur la topologie, les variétés complexes et la géométrie algébrique. Il fut une personnalité de premier plan à son époque. Il a été décrit comme . En 1954, il généralise le théorème de Riemann-Roch en dimension arbitraire pour des variétés algébriques sur le corps des nombres complexes. Sa démonstration sera améliorée et étendue par Alexandre Grothendieck.
Somme connexeEn mathématiques, et plus précisément en topologie, la somme connexe est une opération qui s'effectue sur des variétés connexes de même dimension. La somme connexe de deux variétés connexes de même dimension n est obtenue en retirant à chacune un petit voisinage d'un point formé d'une boule ouverte, et en recollant les deux variétés ainsi obtenues (techniquement : en prenant l'espace quotient de leur union disjointe) le long des deux sphères Sn–1 apparues.
Catégorie concrèteEn mathématiques, et plus précisément en théorie des catégories, une catégorie concrète sur une catégorie est un couple où est une catégorie et est un foncteur fidèle. Le foncteur est appelé le foncteur d'oubli et est appelée la catégorie base pour . Si n'est pas précisée, il est sous-entendu qu'il s'agit de la catégorie des ensembles . Dans ce cas, les objets de la catégorie sont des ensembles munis de certaines structures, et les morphismes de cette catégorie sont les morphismes entre ensembles munis de ces structures.