Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Nombre d'ondeEn physique, le nombre d'onde ou nombre d'ondes (wave number en anglais), ou encore la répétence (repetency), est une grandeur proportionnelle à l'inverse de la longueur d'onde. Deux définitions du nombre d'onde doivent être distinguées. Le nombre d'onde est la norme du vecteur d'onde. Son unité est le radian par mètre. Il est relié à la longueur d'onde par l'équation . Il est l'analogue, dans l'espace, de la fréquence angulaire, ou pulsation, et devrait être qualifié d'angulaire afin de le distinguer du suivant.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
MétamatériauEn physique, en électromagnétisme, le terme métamatériau désigne un matériau composite artificiel qui présente des propriétés électromagnétiques qu'on ne retrouve pas dans un matériau naturel. Il s'agit en général de structures périodiques, diélectriques ou métalliques, qui se comportent comme un matériau homogène n'existant pas à l'état naturel. Il existe plusieurs types de métamatériaux en électromagnétisme, les plus connus étant ceux susceptibles de présenter à la fois une permittivité et une perméabilité négatives.
Onde longitudinaleLongitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
S waveNOTOC In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle movement of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.
Quantité vocaliqueLa quantité vocalique est la longueur ou durée d'une voyelle. En effet, une voyelle peut être brève ou longue ; de nombreuses langues, notamment le latin classique, l'arabe et le grec ancien, font usage de cette distinction dans leur phonologie. La quantité vocalique est généralement marquée en philologie par un signe diacritique : une brève pour les voyelles brèves (Ă, ă) et un macron pour les voyelles longues (Ā, ā).
Espace vectoriel norméUn espace vectoriel normé (EVN) est un espace vectoriel muni d'une norme. Cette structure mathématique développe des propriétés géométriques de distance compatible avec les opérations de l'algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach, cette notion est fondamentale en analyse et plus particulièrement en analyse fonctionnelle, avec l'utilisation d'espaces de Banach tels que les espaces L. Norme (mathématiques) Soit K un corps commutatif muni d'une valeur absolue, et non discret (par exemple le corps des réels ou des complexes).
Norme d'opérateurEn mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .