Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Optique de FourierL'optique de Fourier (du nom de Joseph Fourier), est un domaine de l'optique ondulatoire se basant sur la notion de transformée de Fourier. L'optique ondulatoire utilise principalement le principe de Huygens-Fresnel pour aboutir à des résultats comme celui des fentes de Young, ou de la tache d'Airy. Ces calculs sont relativement compliqués, et pour les simplifier, il est possible de se placer dans le cadre de certaines approximations. Par exemple, la diffraction de Fraunhofer suppose que l'on observe la figure de diffraction à très grande distance de l'objet diffractant.