Théorème de calvitieLe est, en relativité générale, le théorème en vertu duquel tout trou noir astrophysique est entièrement décrit par la métrique de Kerr-Newman, c'est-à-dire par trois et seulement trois paramètres, à savoir : sa masse , sa charge électrique et son moment cinétique , et ce quel que soit son mode de formation et la nature de la matière qui a servi à le former. La conjecture a été proposée, au milieu des années 1960, par les physiciens soviétiques Vitaly L. Ginzburg, Iakov B. Zeldovitch et Igor D. Novikov.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Métrique (physique)En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Censure cosmiqueEn astrophysique, le terme de censure cosmique (cosmic censorship en anglais) désigne une conjecture à propos de la nature des singularités dans l'espace-temps. Selon elle, il n'existe pas de processus physique donnant naissance à une singularité nue, c'est-à-dire une région de l'espace dont le champ gravitationnel prend des valeurs infinies et qui ne serait pas cachée derrière un horizon des événements. Le terme de « censure cosmique » est entre autres l'œuvre du mathématicien britannique Roger Penrose.
Courbe fermée de type tempsDans une variété lorentzienne de la géométrie différentielle, on appelle , courbe de genre temps fermée ou courbe temporelle fermée (closed timelike curve, ou en abrégé CTC, en anglais) la ligne d'univers d'une particule matérielle fermée dans l'espace-temps, c'est-à-dire capable de retourner au même point et à son instant de départ. a évoqué cette possibilité en 1937 et Kurt Gödel en 1949. Si l’existence des CTC était prouvée, cela pourrait au moins impliquer la possibilité théorique de construire une machine à voyager dans le temps, ainsi qu’une reformulation du paradoxe du grand-père.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.