Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Height functionA height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Cryptographie sur les courbes elliptiquesLa cryptographie sur les courbes elliptiques (en anglais, elliptic curve cryptography ou ECC) regroupe un ensemble de techniques cryptographiques qui utilisent une ou plusieurs propriétés des courbes elliptiques, ou plus généralement d'une variété abélienne. L'usage des courbes elliptiques en cryptographie a été suggéré, de manière indépendante, par Neal Koblitz et Victor S. Miller en 1985.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Glossary of arithmetic and diophantine geometryThis is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Fraction dyadiquevignette|upright=1.2|Fractions rationnelles dyadiques dans l'intervalle de 0 à 1|alt=Intervalle unité subdivisé en 1/128 èmes En mathématiques, une fraction dyadique ou rationnel dyadique est un nombre rationnel qui peut s'écrire sous forme de fraction avec pour dénominateur une puissance de deux. On peut noter l'ensemble des nombres dyadiques formellement par Par exemple, 1/2 ou 3/8 sont des fractions dyadiques, mais pas 1/3.
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Elliptic curve digital signature algorithmElliptic Curve Digital Signature Algorithm (ECDSA) est un algorithme de signature numérique à clé publique, variante de DSA. Il fait appel à la cryptographie sur les courbes elliptiques. L’algorithme a été proposé en 1992 par Scott Vanstone, en réponse à un appel d'offres pour les signatures numériques du National Institute of Standards and Technology (NIST). Vanstone fonda la société Certicom en 1985, et son entreprise détient la plupart des brevets des algorithmes à base de courbes elliptiques.