Classe caractéristiqueUne classe caractéristique est un objet mathématique défini et étudié notamment en topologie algébrique et en K-théorie, afin de différencier les fibrés vectoriels. De telles classes sont aujourd'hui comprises comme des invariants cohomologiques. La notion de classe caractéristique répond à une tentative de classification. Plus précisément, si est un fibré vectoriel, une classe caractéristique de est une classe dans la cohomologie de la base qui vérifie la condition suivante, dite de compatibilité : pour toute application continue , on a où est le fibré vectoriel induit sur par .
Nombre double de MersenneEn mathématiques, un nombre double de Mersenne est un nombre de Mersenne de la forme où n est un entier strictement positif et M désigne le n-ième nombre de Mersenne. Les plus petits nombres doubles de Mersenne sont donc : M = M = 1 ; M = M = 7 ; M = M = 127 ; M = M = = 7 × 31 × 151 ; M = M = 2 147 483 647 ; M = M = = 7 × 73 × 127 × 337 × × ; M = M = . Puisqu'un nombre de Mersenne M ne peut être premier que si n est premier (condition nécessaire mais pas suffisante), un nombre double de Mersenne M ne peut être premier que si M est un nombre de Mersenne premier (ce qui nécessite avant tout que p le soit : on a vu par exemple que M et M ne sont pas premiers).
Polynôme caractéristiqueEn mathématiques, et plus particulièrement en algèbre linéaire, à toute matrice carrée à coefficients dans un anneau commutatif ou à tout endomorphisme d'un espace vectoriel de dimension finie est associé un polynôme appelé polynôme caractéristique. Il renferme d'importantes informations sur la matrice ou sur l'endomorphisme, comme ses valeurs propres, son déterminant et sa trace. Le théorème de Cayley-Hamilton assure que toute matrice carrée annule son polynôme caractéristique.
Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Formules pour les nombres premiersEn mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux.
Suite de compositionLa notion de suite de composition est une notion de théorie des groupes. Elle permet, dans un sens qui sera précisé, de considérer un groupe comme « composé » de certains de ses sous-groupes. Soient G un groupe et e son élément neutre. On appelle suite de composition de G toute suite finie (G_0, G_1, ..., G_r) de sous-groupes de G telle queet que, pour tout i ∈ {0, 1, ..., r – 1}, G_i+1 soit sous-groupe normal de G_i.Les quotients G_i/G_i+1 sont appelés les quotients de la suite. Soient Σ_1 = (G_0, G_1, ...
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Nombre parfaitEn arithmétique, un nombre parfait est un entier naturel égal à la moitié de la somme de ses diviseurs ou encore à la somme de ses diviseurs stricts. Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3. Voir la . Dans le Livre IX de ses Éléments, Euclide, au , a démontré que si M = 2 − 1 est premier, alors M(M + 1)/2 = 2(2 – 1) est parfait.
Représentation trivialeEn mathématiques, dans le domaine de la théorie des représentations, une représentation triviale est une représentation d'un groupe G sur lequel tous les éléments de G agissent comme l'application identité de V. Une représentation triviale d'une algèbre associative ou d'une algèbre de Lie est une représentation d'algèbre (de Lie) pour laquelle tous les éléments de l'algèbre agissent comme l'application linéaire nulle (l'endomorphisme nul), qui envoie chaque élément de V sur le vecteur nul.
Nombre premier de WilsonEn arithmétique, un nombre premier de Wilson est un nombre premier p tel que p divise (p – 1)! + 1, où ! désigne la fonction factorielle ; comparer ceci avec le théorème de Wilson, qui énonce que tout nombre premier p divise (p – 1)! + 1. Les seuls nombres premiers de Wilson connus sont 5, 13, et 563 () ; si d'autres existent, ils doivent être plus grands que 2 × 10. On conjecture qu'il existe une infinité de nombres premiers de Wilson, et que le nombre de nombres premiers de Wilson dans un intervalle [x, y] est d'environ log(log(y)/log(x)).