Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Loi de StokesLa loi de Stokes, nommée en l'honneur de George Stokes (1819 – 1903), est une loi donnant la force de traînée hydrodynamique s'exerçant sur une sphère en déplacement dans un fluide. Si le nombre de Reynolds est très inférieur à 1 (écoulement rampant) et si la sphère est suffisamment loin de tout autre corps, de tout obstacle ou paroi latérale (on considère une paroi éloignée d'au moins dix fois le rayon de la sphère), alors la force de traînée hydrodynamique qui s'exerce sur une sphère de diamètre est : où est la viscosité dynamique du fluide (en ) et le diamètre de la sphère.
Fluide (matière)Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les liquides, les gaz et les plasmas. Gaz et plasmas sont très compressibles, tandis que les liquides le sont très peu (à peine plus que les solides). La transition de l'état liquide à l'état gazeux (ou réciproquement) est en général de premier ordre, c'est-à-dire brusque, discontinue.
Bühlmann decompression algorithmThe Bühlmann decompression set of parameters is an Haldanian mathematical model (algorithm) of the way in which inert gases enter and leave the human body as the ambient pressure changes. Versions are used to create Bühlmann decompression tables and in personal dive computers to compute no-decompression limits and decompression schedules for dives in real-time. These decompression tables allow divers to plan the depth and duration for dives and the required decompression stops.
Decompression equipmentThere are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures. Decompression obligation for a given must be calculated and monitored to ensure that the risk of decompression sickness is controlled. Some equipment is specifically for these functions, both during planning before the dive and during the dive.
Tables de décompressionLes tables de décompression ou tables de plongée sont utilisées par les plongeurs afin de gérer leur remontée en surface tout en permettant à leur organisme d'éliminer l'azote emmagasiné au long de la plongée. Elles permettent à un plongeur équipé d'un scaphandre autonome de se soustraire d'une profondeur déterminée avec temps défini en limitant les risques liés à la décompression des gaz en respectant une vitesse de remontée constante et d'éventuels paliers de décompression.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.