Fonction méromorpheEn mathématiques, et plus précisément en analyse complexe, une fonction méromorphe est une fonction holomorphe dans tout le plan complexe, sauf éventuellement sur un ensemble de points isolés dont chacun est un pôle pour la fonction. Cette terminologie s'explique par le fait qu'en grec ancien, meros (μέρος) signifie « partie » et holos (ὅλος) signifie « entier ». Le théorème de factorisation de Hadamard affirme que toute fonction méromorphe peut s'écrire comme le rapport de deux fonctions entières (dont celle du dénominateur n'est pas identiquement nulle) : les pôles de la fonction correspondent aux zéros du dénominateur.
Compacité séquentielleEn mathématiques, un espace séquentiellement compact est un espace topologique dans lequel toute suite possède au moins une sous-suite convergente. La notion de compacité séquentielle entretient des rapports étroits avec celles de quasi-compacité et compacité et celle de compacité dénombrable. Pour un espace métrique (notamment pour un espace vectoriel normé), ces quatre notions sont équivalentes. Intuitivement, un ensemble compact est « petit » et « fermé », au sens où l'on ne peut « s'en échapper ».
Modes of convergenceIn mathematics, there are many senses in which a sequence or a series is said to be convergent. This article describes various modes (senses or species) of convergence in the settings where they are defined. For a list of modes of convergence, see Modes of convergence (annotated index) Note that each of the following objects is a special case of the types preceding it: sets, topological spaces, uniform spaces, TAGs (topological abelian groups), normed spaces, Euclidean spaces, and the real/complex numbers.
Théorème de convergence dominéeEn mathématiques, et plus précisément en analyse, le théorème de convergence dominée est un des théorèmes principaux de la théorie de l'intégration de Lebesgue. Soit une suite de fonctions continues à valeurs réelles ou complexes sur un intervalle de la droite réelle. On fait les deux hypothèses suivantes : la suite converge simplement vers une fonction ; il existe une fonction continue telle queAlors L'existence d'une fonction intégrable majorant toutes les fonctions f équivaut à l'intégrabilité de la fonction (la plus petite fonction majorant toutes les fonctions f).
Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Équation de Helmholtzvignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.