Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Loi de comportementLes lois de comportement de la matière, étudiées en science des matériaux et notamment en mécanique des milieux continus, visent à modéliser le comportement des fluides ou solides par des lois empiriques lors de leur déformation. Les modèles ci-dessous sont volontairement simplifiés, afin de permettre d'appréhender les notions élémentaires.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Débit (physique)Le débit est la quantité d'une grandeur qui traverse une surface donnée par unité de temps. Il permet de quantifier un déplacement de matière ou d'énergie. Le terme débit est le plus souvent associé au débit volumique : il quantifie alors le volume qui traverse une surface, une section, par unité de temps. Le débit massique caractérise la masse qui traverse la surface par unité de temps. Il s'agit de notions centrales dans une situation d'écoulement de fluide.
Lois de Fickvignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.
PorositéLa porosité est l'ensemble des vides (pores) d'un matériau, ces vides sont remplis par des fluides (liquides ou gaz). Les matériaux poreux sont très généralement des solides, mais il existe aussi des liquides poreux. La porosité est aussi une grandeur physique définie comme le rapport entre le volume des vides et le volume total d'un milieu poreux, sa valeur est comprise entre 0 et 1 (ou, en pourcentage, entre 0 et 100 %) : où : est la porosité, le volume des pores, et le volume total du matériau, c'est-à-dire la somme du volume de solide et du volume des pores.
Propriété macroscopiqueUne propriété macroscopique est une caractéristique d'un corps qui peut être observée en l'observant globalement. C'est une propriété à grande échelle, par opposition aux « propriétés microscopiques » qui caractérisent les plus petits constituants du corps. C'est le cas d'une particule, tant qu'on peut la voir. En biologie c'est en général à notre échelle, mais cette traduction ne convient pas vraiment à la chimie ou à la physique moléculaire.
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.