Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Joseph-Louis LagrangeJoseph Louis de Lagrange (en italien Giuseppe Luigi Lagrangia ou aussi Giuseppe Ludovico De la Grange Tournier), né à Turin le de parents français descendants de Descartes et mort à Paris le , est un mathématicien, mécanicien et astronome italien, originaire du royaume de Sardaigne et naturalisé français. À l'âge de trente ans, il quitte Turin et va séjourner à Berlin pendant vingt-et-un ans. Ensuite, il s'installe pour ses vingt-six dernières années à Paris où il prend la nationalité française en 1802.
Variété symplectiqueEn mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.
Matrice symplectiqueEn mathématique, une matrice symplectique est une matrice M de taille 2n par 2n (dont les entrées sont typiquement soit des réels soit des complexes) satisfaisant la condition où MT désigne la matrice transposée de M et J est la matrice par blocs antisymétrique définie par : (In étant la matrice identité n×n). On remarque que le déterminant de J vaut 1 et qu'on a l'identité J = −I2n. Toute matrice symplectique est inversible et son inverse est donnée par : De plus, le produit de deux matrices symplectiques est, à nouveau, une matrice symplectique.
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Forme de LiouvilleEn géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein. Si M est une variété différentielle de dimension n, désigne l'espace total du fibré cotangent de M et peut être regardé comme une variété différentielle de dimension 2n.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.