Arnoldi iterationIn numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices. The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called direct methods which must complete to give any useful results (see for example, Householder transformation).
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Suite définie par récurrenceEn mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Résolution de problèmevignette|Résolution d'un problème mathématique. La résolution de problème est le processus d'identification puis de mise en œuvre d'une solution à un problème. Analyse de cause racine (ACR, Root cause analysis) : cette démarche part du constat qu'il est plus judicieux de traiter les causes d'un problème que d'en traiter les symptômes immédiats. Puisqu'analyser les causes d'un problème permet d'en déterminer une solution définitive, et donc, empêcher qu'il ne se reproduise de nouveau.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Méthode des trapèzesEn analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles. Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T : En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. ()..
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Creative Problem SolvingLe Creative Problem Solving (CPS) est une méthode créative de résolution de problème élaborée par Alex Osborn et . Elle allie à la fois un processus structuré, des techniques, et des rôles attribués aux différents intervenants dans ce processus. En 1942, le publicitaire Alex Osborn décrit dans son livre How To Think Up, puis dans Applied Imagination en 1953, le brainstorming (« l’attaque d’un problème dans un style commando ») qui est à l’origine du Creative Problem Solving.