Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Kernel regressionIn statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In any nonparametric regression, the conditional expectation of a variable relative to a variable may be written: where is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate as a locally weighted average, using a kernel as a weighting function.
Density estimationIn statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as a random sample from that population. A variety of approaches to density estimation are used, including Parzen windows and a range of data clustering techniques, including vector quantization.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Kernel smootherA kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average. Let be a kernel defined by where: is the Euclidean norm is a parameter (kernel radius) D(t) is typically a positive real valued function, whose value is decreasing (or not increasing) for the increasing distance between the X and X0.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Fonction de vraisemblancevignette|Exemple d'une fonction de vraisemblance pour le paramètre d'une Loi de Poisson En théorie des probabilités et en statistique, la fonction de vraisemblance (ou plus simplement vraisemblance) est une fonction des paramètres d'un modèle statistique calculée à partir de données observées. Les fonctions de vraisemblance jouent un rôle clé dans l'inférence statistique fréquentiste, en particulier pour les méthodes statistiques d'estimation de paramètres.
Normalizing constantIn probability theory, a normalizing constant or normalizing factor is used to reduce any probability function to a probability density function with total probability of one. For example, a Gaussian function can be normalized into a probability density function, which gives the standard normal distribution. In Bayes' theorem, a normalizing constant is used to ensure that the sum of all possible hypotheses equals 1. Other uses of normalizing constants include making the value of a Legendre polynomial at 1 and in the orthogonality of orthonormal functions.
Splinevignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré.