Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Generalized linear mixed modelIn statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. They also inherit from GLMs the idea of extending linear mixed models to non-normal data. GLMMs provide a broad range of models for the analysis of grouped data, since the differences between groups can be modelled as a random effect. These models are useful in the analysis of many kinds of data, including longitudinal data.
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Convergence inconditionnelleSoient X un groupe topologique abélien — par exemple un espace vectoriel normé — et (x) une suite d'éléments de X. On dit que la série ∑ x converge inconditionnellement ou qu'elle est commutativement convergente si, pour toute permutation σ : N → N, la série converge dans X. Toute série absolument convergente dans un espace de Banach X est inconditionnellement convergente. La réciproque est vraie si et seulement si X est de dimension finie. Une base de Schauder de X est dite inconditionnelle si pour tout x ∈ X, la série représentant x converge inconditionnellement.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Linear canonical transformationIn Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Transformée de WalshEn mathématiques, et plus précisément en analyse harmonique, la transformée de Walsh est l'analogue de la transformée de Fourier discrète. Elle opère sur un corps fini à la place des nombres complexes. Elle est utilisée en théorie de l'information à la fois pour les codes linéaires et la cryptographie. Analyse harmonique sur un groupe abélien fini Le contexte est identique à celui de l'analyse harmonique classique d'un groupe abélien fini.