InondationUne inondation est une submersion temporaire, naturelle ou artificielle, d'un espace par de l'eau liquide. Ce terme est fréquemment utilisé pour décrire : le débordement d'un cours d'eau, en crue puis en décrue, sur les terrains voisins ; l'eau est répandue dans les talwegs et les dépressions topographiques ; le ruissellement très important d'origine pluviale, soit sur des terres cultivées (inondation boueuse), soit en zone imperméable urbanisée ; le débordement ou les conséquences de la rupture d'ouvrages artificiels hydrauliques tels que retenues d'eau, digues, canalisations (agricoles, d'eau potable, d'assainissement) ou la rupture d'une retenue naturelle comme celle d'un lac glaciaire, provoquant une inondation soudaine ; la remontée émergente d'une nappe phréatique ; l'envahissement temporaire par la mer d'une zone côtière lors d'une submersion marine ou d'un tsunami.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Érosionthumb|Effet de la combinaison de l'érosion éolienne et hydrique (Coyote Buttes, Vermilion Cliffs National Monument, États-Unis). thumb|Risque d'érosion des sols (Europe méditerranéenne). En géomorphologie, l’érosion est le processus de dégradation et de transformation du relief, et donc des sols, roches, berges et littoraux qui est causé par tout agent externe (donc autre que la tectonique). Un relief dont le modelé s'explique principalement par l'érosion est dit « relief d'érosion ».
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Statistique multivariéeEn statistique, les analyses multivariées ont pour caractéristique de s'intéresser à des lois de probabilité à plusieurs variables. Les analyses bivariées sont des cas particuliers à deux variables. Les analyses multivariées sont très diverses selon l'objectif recherché, la nature des variables et la mise en œuvre formelle. On peut identifier deux grandes familles : celle des méthodes descriptives (visant à structurer et résumer l'information) et celle des méthodes explicatives visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Variable catégorielleEn statistique, une variable qualitative, une variable catégorielle, ou bien un facteur est une variable qui prend pour valeur des modalités, des catégories ou bien des niveaux, par opposition aux variables quantitatives qui mesurent sur chaque individu une quantité. Les modalités (ou les valeurs) qu’elle prend peuvent être désignés en toutes lettre par des noms , comme par exemple: les modalités du sexe sont : Masculin et Féminin les modalités de la couleurs des yeux sont : Bleu, Marron, Noir et Vert ; les modalités de la variable mention au Bac sont : TB, B, AB et P.
Régression multivariée par spline adaptativeLa Régression multivariée par spline adaptative (en anglais MARS pour ) est une méthode statistique ; plus précisément, c'est une forme de modèle de régression présentée pour la première fois par Jerome H. Friedman et Bernard Silverman en 1991. C'est une technique de régression non paramétrique pouvant être vue comme une extension des régressions linéaires qui modélisent automatiquement des interactions et des non-linéarités. Le terme MARS est une marque de Salford Systems.
Érosion des solsvignette|redresse=1.7|Cartographie mondiale de la vulnérabilité des sols à l'érosion hydrique. Des taux d'érosion deux fois plus élevé que le taux de formation des sols (voire quarante fois dans les pays développés actuels dont l'agriculture productiviste se traduit par un labour ou un travail du sol intensif) explique l'espérance de vie des grandes civilisations antiques rythmés par la loi des cycles millénaires avec une phase d'expansion suivie d'une phase de déclin (en moyenne de 800 à , donnée compatible avec l'érosion complète des couches arables et fertiles par leur culture intensive reposant sur environ un mètre de terre végétale).
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.