Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Densité surfacique d'énergieLa densité surfacique d'énergie ou énergie surfacique, voire densité énergétique (quand le contexte surfacique est clair), est la quantité d’énergie par une unité de surface. Dans le Système international elle se mesure en J/m (joules par mètre carré). Dans un contexte industriel on l'exprime souvent en kWh/m (kilowatts-heures par mètre carré). Cette grandeur physique est principalement utilisée dans l'étude physique des interfaces entre liquides non miscibles, ou entre liquide et gaz, où elle caractérise l'énergie nécessaire à former une interface d'une certaine surface.
Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Tension superficiellevignette|et aux gerridés de se déplacer à la surface d'une mare. La tension superficielle est un phénomène physico-chimique lié aux interactions moléculaires d'un fluide. Elle résulte de l'augmentation de l'énergie à l'interface entre deux fluides. Le système tend vers un équilibre qui correspond à la configuration de plus basse énergie, il modifie donc sa géométrie pour diminuer l'aire de cette interface. La force qui maintient le système dans cette configuration est la tension superficielle.
Glossaire de topologieCeci est un glossaire de quelques termes utilisés en topologie. Ce glossaire est divisé en deux parties. La première traite des concepts généraux, et la seconde liste différents types d'espaces topologiques. Dans ce glossaire, tous les espaces sont supposés topologiques. Accessible : voir l'axiome de séparation T1. Adhérence L'adhérence ou fermeture d'une partie d'un espace topologique est le plus petit fermé contenant celle-ci. Un point est dit adhérent à une partie s'il appartient à son adhérence.
Ouvert (topologie)En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. Il existe plusieurs définitions des ouverts suivant le type d'espace concerné. Nous reprenons ici la définition pour le cas le plus général à savoir celui des espaces topologiques.
Base (topologie)En mathématiques, une base d'une topologie est un ensemble d'ouverts tel que tout ouvert de la topologie soit une réunion d'éléments de cet ensemble. Ce concept est utile parce que de nombreuses propriétés d'une topologie se ramènent à des énoncés sur une de ses bases et beaucoup de topologies sont faciles à définir par la donnée d'une base. Soit (X, T) un espace topologique. Un réseau de T est un ensemble N de parties de X tel que tout ouvert U de T est une réunion d'éléments de N, autrement dit : pour tout point x de U, il existe dans N une partie incluse dans U et contenant x.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Énergie potentielle gravitationnelleEn physique classique, l'énergie potentielle gravitationnelle ou énergie potentielle de pesanteur est l'énergie que possède un corps du fait de sa position dans un champ gravitationnel. Son interprétation la plus naturelle est liée au travail qu'il faut fournir pour déplacer un objet plongé dans un champ gravitationnel. Comme pour toute énergie, son unité dans le Système international est le joule (J). L'énergie potentielle gravitationnelle est, comme toutes les formes d'énergies potentielles, définie à une constante additive arbitraire près.