Géométrie de construction de solidesEn infographie, la géométrie de construction de solides (CSG en anglais : "Constructive Solid Geometry") est une branche de la modélisation des solides (ou modélisation 3D). Cette technique de modélisation géométrique concerne la représentation d'un objet solide comme combinaison d'objets solides simples (exemple : cylindre, sphère, cône, tore, etc.) à l'aide d'opérateurs géométriques booléens (exemple : union, intersection, soustraction).
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.
Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Limite d'une suiteEn mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.
Fil de fer (3D)Un rendu en fil de fer (FDF) est une représentation visuelle d'un objet en 3D. On la crée en spécifiant chaque coin de l'objet où deux surfaces continues se rencontrent, ou en reliant les sommets en utilisant des lignes droites. En utilisant un rendu en fil de fer, on peut apercevoir la structure interne de l'objet 3D. Bien que les rendus en fil de fer soient relativement simples et rapides à calculer, ils ne sont utilisés que dans des cas où une grande vitesse de rendu est requise, ou à des fins de débogage.
Espace vectoriel norméUn espace vectoriel normé (EVN) est un espace vectoriel muni d'une norme. Cette structure mathématique développe des propriétés géométriques de distance compatible avec les opérations de l'algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach, cette notion est fondamentale en analyse et plus particulièrement en analyse fonctionnelle, avec l'utilisation d'espaces de Banach tels que les espaces L. Norme (mathématiques) Soit K un corps commutatif muni d'une valeur absolue, et non discret (par exemple le corps des réels ou des complexes).
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Connexité simpleEn topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
Comparison of computer-aided design softwareThe table below provides an overview of notable computer-aided design (CAD) software. It does not judge power, ease of use, or other user-experience aspects. The table does not include software that is still in development (beta software). For all-purpose 3D programs, see Comparison of 3D computer graphics software. CAD refers to a specific type of drawing and modelling software application that is used for creating designs and technical drawings. These can be 3D drawings or 2D drawings (like floor plans).
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.