Radiothérapiethumb|upright=1.5|Accélérateur linéaire de radiothérapie Varian-Clinac 2100 C/D dans le Centre azuréen de cancérologie, Mougins, France. La radiothérapie est une méthode de traitement locorégional des cancers, utilisant des radiations pour détruire les cellules cancéreuses en bloquant leur capacité à se multiplier. L'irradiation a pour but de détruire toutes les cellules tumorales tout en épargnant les tissus sains périphériques. La radiothérapie est utilisée chez plus de la moitié des patients ayant un cancer.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Rotation vectorielleSoit E un espace vectoriel euclidien. Une rotation vectorielle de E est un élément du groupe spécial orthogonal SO(E). Si on choisit une base orthonormée de E, sa matrice dans cette base est orthogonale directe. Matrice de rotation Dans le plan vectoriel euclidien orienté, une rotation vectorielle est simplement définie par son angle . Sa matrice dans une base orthonormée directe est : Autrement dit, un vecteur de composantes a pour image le vecteur de composantes que l'on peut calculer avec l'égalité matricielle : c'est-à-dire que l'on a : et Si par exemple et , désigne un des angles du triangle rectangle de côtés 3, 4 et 5.
TranslationEn géométrie, une translation est une transformation géométrique qui correspond à l'idée intuitive de « glissement » d'un objet, sans rotation, retournement ni déformation de cet objet. En géométrie classique, la notion de translation est très fortement liée à celle de vecteur, qu'elle suit ou précède. Ainsi trouve-t-on la translation de vecteur définie comme une transformation qui, à tout point M, associe le point M' tel que : On dit alors que M’ est le translaté de M. C'est l'image de M par cette translation.
Plane of rotationIn geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts. This can be done using geometric algebra, with the planes of rotations associated with simple bivectors in the algebra.
Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Durcissement (électronique)Le durcissement des composants électroniques contre les rayonnements ionisants désigne un mode de conception, de réalisation et de test des systèmes et composants électroniques pour les rendre résistants aux dysfonctionnements et dégradations causés par des rayonnements électromagnétiques et les particules subatomiques énergétiques rencontrés lors des vols spatiaux ou en haute altitude, ainsi que dans l'environnement des réacteurs nucléaires, voire lors d'opérations militaires.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Période de rotationLa période de rotation est soit la durée mise par un astre (étoile, planète, astéroïde) pour faire un tour sur lui-même (environ pour la Terre, par exemple), soit la durée au bout de laquelle une planète retrouve la même orientation par rapport à son étoile ( en moyenne pour la Terre, par exemple). Le terme ne doit pas être confondu avec la période de révolution d'un astre, qui désigne le mouvement orbital d'un corps par rapport à un autre.