Dimension de KrullEn mathématiques, et plus particulièrement en géométrie algébrique, la taille et la complexité d'une variété algébrique (ou d'un schéma) est d'abord mesurée par sa dimension. Elle est fondée sur la topologie de Zariski et coïncide avec l'intuition dans le cas des espaces affines. Espace topologique irréductible Soit un espace topologique. On dit que est irréductible si tout ouvert non vide de est partout dense dans . Cela revient à dire que si et sont deux parties fermées dont la réunion est égale à , alors l'une d'entre elles est égale à .
Exceptional inverse image functorIn mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of . It is needed to express Verdier duality in its most general form. Let f: X → Y be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor Rf!: D(Y) → D(X) where D(–) denotes the of sheaves of abelian groups or modules over a fixed ring.
Dimension theory (algebra)In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety (and by extension that of a scheme). The need of a theory for such an apparently simple notion results from the existence of many definitions of dimension that are equivalent only in the most regular cases (see Dimension of an algebraic variety).
Nombre de LiouvilleEn mathématiques, et plus précisément en théorie des nombres, un nombre de Liouville est un nombre réel x ayant la propriété suivante :pour tout entier n, il existe des entiers q > 1 et p tels que 0 < |x – p/q| < 1/q ou, ce qui est équivalent : pour tout entier n et tout réel , il existe des entiers q > 0 et p tels que 0 < |x – p/q| < A/q. Un nombre de Liouville peut ainsi être approché « de manière très fine » par une suite de nombres rationnels.
HolonomieEn mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale.
Regular sequenceIn commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. For a commutative ring R and an R-module M, an element r in R is called a non-zero-divisor on M if r m = 0 implies m = 0 for m in M. An M-regular sequence is a sequence r1, ..., rd in R such that ri is a not a zero-divisor on M/(r1, ..., ri-1)M for i = 1, ..., d.
Forme de LiouvilleEn géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein. Si M est une variété différentielle de dimension n, désigne l'espace total du fibré cotangent de M et peut être regardé comme une variété différentielle de dimension 2n.
Lemme de SchurEn mathématiques et plus précisément en algèbre linéaire, le lemme de Schur est un lemme technique utilisé particulièrement dans la théorie de la représentation des groupes. Il a été démontré en 1907 par Issai Schur dans le cadre de ses travaux sur la théorie des représentations d'un groupe fini. Ce lemme est à la base de l'analyse d'un caractère d'une représentation d'un groupe fini ; il permet, par exemple, de caractériser les groupes abéliens finis.
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.