Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Trigonometric interpolationIn mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.
Interpolation d'Hermitethumb|Comparaison graphique entre interpolation lagrangienne (en rouge) et hermitienne (en bleu) de la fonction (en noir) en trois points équidistants -1, 1/2, 2. En analyse numérique, l'interpolation d'Hermite, nommée d'après le mathématicien Charles Hermite, est une extension de l'interpolation de Lagrange, qui consiste, pour une fonction dérivable donnée et un nombre fini de points donnés, à construire un polynôme qui est à la fois interpolateur (c'est-à-dire dont les valeurs aux points donnés coïncident avec celles de la fonction) et osculateur (c'est-à-dire dont les valeurs de la dérivée aux points donnés coïncident avec celles de la dérivée de la fonction).
Interpolation bilinéaireL'interpolation bilinéaire est une méthode d'interpolation pour les fonctions de deux variables sur une grille régulière. Elle permet de calculer la valeur d'une fonction en un point quelconque, à partir de ses deux plus proches voisins dans chaque direction. C'est une méthode très utilisée en pour le , qui permet d'obtenir de meilleurs résultats que l'interpolation par plus proche voisin, tout en restant de complexité raisonnable.
Interpolation lagrangienneEn analyse numérique, les polynômes de Lagrange, du nom de Joseph-Louis Lagrange, permettent d'interpoler une série de points par un polynôme qui passe exactement par ces points appelés aussi nœuds. Cette technique d'interpolation polynomiale a été découverte par Edward Waring en 1779 et redécouverte plus tard par Leonhard Euler en 1783. C'est un cas particulier du théorème des restes chinois. On se donne n + 1 points (avec les xi distincts deux à deux).
Interpolation bicubiquevignette|Illustration de l'interpolation bicubique sur un ensemble de données aléatoires En mathématiques, l'interpolation bicubique est une extension de l'interpolation cubique pour interpoler un ensemble de points distribués sur une grille régulière bidimensionnelle. La surface interpolée est plus lisse que les surfaces correspondantes obtenues par interpolation bilinéaire ou par sélection du plus proche voisin. L'interpolation bicubique peut être accomplie en utilisant soit des polynômes de Lagrange, soit des splines cubiques, soit un algorithme de convolution cubique.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Interpolation newtonienneEn analyse numérique, l'interpolation newtonienne, du nom d'Isaac Newton, est une méthode d'interpolation polynomiale permettant d'obtenir le polynôme de Lagrange comme combinaison linéaire de polynômes de la « base newtonienne ». Contrairement à l'interpolation d'Hermite par exemple, cette méthode ne diffère de l'interpolation lagrangienne que par la façon dont le polynôme est calculé, le polynôme d'interpolation qui en résulte est le même. Pour cette raison on parle aussi plutôt de la forme de Newton du polynôme de Lagrange.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.