Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Agent logicielEn informatique, un agent ou agent logiciel (du latin agere : agir) est un logiciel qui agit de façon autonome. C'est un programme qui accomplit des tâches à la manière d'un automate et en fonction de ce que lui a demandé son auteur. Dans le contexte d'Internet, les agents intelligents sont liés au Web sémantique, dans lequel ils sont utilisés pour faire à la place des humains les recherches et les corrélations entre les résultats de ces recherches. Ceci se fait en fonction de règles prédéfinies.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Méthode d'exhaustionEn mathématiques, la méthode d'exhaustion est un procédé ancien de calcul d'aires, de volumes et de longueurs de figures géométriques complexes. La quadrature est la recherche de l'aire d'une surface, la rectification est celle de la longueur d'une courbe. Dans le cas du calcul de l'aire A d'une figure plane, la méthode d'exhaustion consiste en un double raisonnement par l'absurde : on suppose que son aire est strictement supérieure à A, puis on aboutit à une contradiction ; on suppose ensuite que son aire est strictement inférieure à A, puis on aboutit à une autre contradiction.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Intelligence artificielle distribuéeL'Intelligence Artificielle Distribuée (IAD) est une branche de l'Intelligence artificielle. On distinguera : le principe d'adapter les approches de l'Intelligence Artificielle classique sur une architecture distribuée (par exemple avec une parallélisation des programmes) les approches où l'Intelligence Artificielle est conceptuellement répartie sur un certain nombre d'entités (réseaux de neurones artificiels, systèmes multi-agents) de façon similaire à une Intelligence distribuée.
Styles d'apprentissageLes styles d’apprentissage constituent une gamme de théories concurrentes et contestées qui, à partir d’un concept commun selon lequel les apprenants diffèreraient dans la façon d’acquérir leur connaissances, vise à tenir compte desdites différences d’acquisition supposées chez les apprenants. Bien que ces diverses théories divergent dans leurs vues sur la façon dont lesdits styles doivent être définis et classés, ces théories suggèrent que tous les apprenants pourraient être étiquetés en fonction d’un « style » d’apprentissage particulier comme « visuel », « auditif », « kinesthésique », « tactile », etc.
Lifelong learningLifelong learning is the "ongoing, voluntary, and self-motivated" pursuit of knowledge for either personal or professional reasons. It is important for an individual's competitiveness and employability, but also enhances social inclusion, active citizenship, and personal development. In some contexts, the term "lifelong learning" evolved from the term "life-long learners", created by Leslie Watkins and used by Clint Taylor, professor at CSULA and Superintendent for the Temple City Unified School District, in the district's mission statement in 1993, the term recognizes that learning is not confined to childhood or the classroom but takes place throughout life and in a range of situations.
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.