CercleEn géométrie euclidienne, un cercle est une courbe plane fermée constituée de points situés à égale distance d'un point nommé centre. Cette distance est appelée rayon du cercle. Dans le plan euclidien, il s'agit du « rond » qui est associé en français au terme de cercle. Dans un plan non euclidien ou dans le cas de la définition d'une distance non euclidienne, la forme peut être plus complexe. Dans un espace de dimension quelconque, l'ensemble des points placés à une distance constante d'un centre est appelé sphère.
Courbe planevignette|droite|Courbe hyperbolique. En mathématiques, plus précisément en géométrie, une courbe plane est une courbe qui est entièrement contenue dans un (unique) plan, et qui est identifiable à une fonction continue : où est un intervalle de l'ensemble des nombres réels. L' d'une courbe est aussi appelée support de la courbe. Parfois, on utilise aussi l'expression courbe pour indiquer le support d'une courbe. Une courbe sur un espace euclidien de dimension supérieure à 2 est dite plane si son support est contenu dans un plan lui-même contenu dans l'espace euclidien dans lequel elle est définie.
Arbre couvrant de poids minimalthumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Circular algebraic curveIn geometry, a circular algebraic curve is a type of plane algebraic curve determined by an equation F(x, y) = 0, where F is a polynomial with real coefficients and the highest-order terms of F form a polynomial divisible by x2 + y2. More precisely, if F = Fn + Fn−1 + ... + F1 + F0, where each Fi is homogeneous of degree i, then the curve F(x, y) = 0 is circular if and only if Fn is divisible by x2 + y2. Equivalently, if the curve is determined in homogeneous coordinates by G(x, y, z) = 0, where G is a homogeneous polynomial, then the curve is circular if and only if G(1, i, 0) = G(1, −i, 0) = 0.
Grand cercleEn géométrie, un grand cercle est un cercle tracé à la surface d'une sphère qui a le même diamètre qu'elle. De manière équivalente, on peut définir un grand cercle comme un cercle tracé sur la sphère ayant le même centre que la sphère ; ou encore, comme l'intersection entre une sphère et un plan passant par le centre de cette sphère ; ou comme un cercle tracé sur la sphère de longueur maximale. Par exemple, que l'on modélise le globe terrestre par une sphère ou que l'on considère l'ellipsoïde, dans ces deux cas l'équateur est un grand cercle.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.