Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Moteur physiqueUn moteur physique est, en informatique, une bibliothèque logicielle indépendante appliquée à la résolution de problèmes de la mécanique classique. Les résolutions typiques sont les collisions, la chute des corps, les forces, la cinétique, etc. Les moteurs physiques sont principalement utilisés dans des simulations scientifiques et dans les jeux vidéo. Certains sont également libres pour l'utilisation commerciale, à vérifier bibliothèque par bibliothèque. Box2D (Licence Zlib) Chipmunk (C, C++, Ruby, Python, OCaml.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Thermal energy storageThermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning (Seasonal thermal energy storage).
Limit setIn mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.
Méthode d'exhaustionEn mathématiques, la méthode d'exhaustion est un procédé ancien de calcul d'aires, de volumes et de longueurs de figures géométriques complexes. La quadrature est la recherche de l'aire d'une surface, la rectification est celle de la longueur d'une courbe. Dans le cas du calcul de l'aire A d'une figure plane, la méthode d'exhaustion consiste en un double raisonnement par l'absurde : on suppose que son aire est strictement supérieure à A, puis on aboutit à une contradiction ; on suppose ensuite que son aire est strictement inférieure à A, puis on aboutit à une autre contradiction.
Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .