Joseph FourierJean Baptiste Joseph Fourier est un mathématicien et physicien français né le à Auxerre et mort le à Paris. Joseph Fourier est connu pour avoir déterminé, par le calcul, la diffusion de la chaleur en utilisant la décomposition d'une fonction périodique en une série trigonométrique, qui sous certaines conditions, converge vers la fonction. Ces séries sont utilisées dans la résolution des équations aux dérivées partielles. Veuf en 1757, son père, qui avait déjà trois enfants, se remarie deux ans plus tard avec Edmée Germaine Lebègue.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
HydrostatiqueL'hydrostatique, ou statique des fluides, est l'étude des fluides immobiles. Fondée par Archimède, c'est un cas de la mécanique des fluides riche d'enseignements. La pression d'un fluide est liée aux mouvements et aux chocs que les particules qu'il contient exercent sur les parois d'une enceinte. Que ce soit un liquide ou l'air atmosphérique, les chocs exercent des forces pressantes sur les parois d'une enceinte. Le traité d'hydrostatique de Simon Stevin a paru d'abord en hollandais à Leyde en 1586 sous le titre De Beghinselen des Waterwichts.
FrottementEn physique, le frottement (ou friction) est une interaction qui s'oppose au mouvement relatif entre deux systèmes en contact. Le frottement peut être étudié au même titre que les autres types de force ou de couple. Son action est caractérisée par une norme et une orientation, ce qui en fait un vecteur. L'orientation de la force (ou du couple) de frottement créé sur un corps est opposée au déplacement relatif de ce corps par rapport à son environnement. La science qui étudie le frottement entre solides est la tribologie.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Dimension de Minkowski-BouligandEn géométrie fractale, la dimension de Minkowski-Bouligand, également appelée dimension de Minkowski, dimension box-counting ou capacité, est une manière de déterminer la dimension fractale d'un sous-ensemble S dans un espace euclidien ou, plus généralement, dans un espace métrique. Pour calculer cette dimension pour une fractale S, placer cette fractale dans un réseau carré et compter le nombre de cases nécessaires pour recouvrir l'ensemble. La dimension de Minkowski est calculée en observant comment ce nombre de cases évolue à mesure que le réseau s'affine à l'infini.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.