Graphe de Ramanujanvignette|Le graphe de Pappus, qui selon les valeurs propres de sa matrice de connexion, est aussi un graphe de Ramanujan. Un graphe de Ramanujan, nommé d'après Srinivasa Ramanujan, est un graphe régulier dont le trou spectral (spectral gap) est presque aussi grand que possible. De tels graphes sont d'excellents graphes expanseurs. Autrement dit, il s'agit d'une famille de graphes où chaque sommet a un même degré (régulier) et où les deux valeurs propres les plus élevées ont une différence presque aussi grande que possible.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
5-polytopeIn geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope.
Semiregular polytopeIn geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition. In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular.
Géométrie finieUne géométrie finie est un système géométrique dont les points sont en nombre fini. La géométrie euclidienne usuelle n'est pas finie, une droite euclidienne possédant une infinité de points. Une géométrie basée sur les images affichées sur un écran d'ordinateur, où les pixels sont considérés comme des points, serait une géométrie finie. Bien qu'il existe de nombreux systèmes que l'on pourrait appeler des géométries finies, on porte principalement l'attention sur les espaces projectifs et affines finis en raison de leur régularité et de leur simplicité.
Espace projectifEn mathématiques, un espace projectif est le résultat d'une construction fondamentale qui consiste à rendre homogène un espace vectoriel, autrement dit à raisonner indépendamment des proportionnalités pour ne plus considérer que des directions. Par exemple, l'espace projectif réel de dimension n, P(R),ou RPn, est l'ensemble des droites vectorielles ou des directions de R ; formellement, c'est le quotient de R{0} par la relation d'équivalence de colinéarité. On peut munir ces espaces projectifs de structures additionnelles pour en faire des variétés.
Dualité (géométrie projective)La dualité projective, découverte par Jean-Victor Poncelet, est une généralisation de l'analogie entre le fait que par deux points distincts passe une droite et une seule, et le fait que deux droites distinctes se coupent en un point et un seul (à condition de se placer en géométrie projective, de sorte que deux droites parallèles se rencontrent en un point à l'infini).
FacettageEn géométrie, le facettage est le procédé d'enlèvement de parties d'un polygone, d'un polyèdre ou d'un polytope, sans créer de nouveaux sommets. Le facettage est la réciproque ou le procédé dual de la stellation. Pour chaque stellation d'un certain polytope convexe, il existe un facettage dual d'un polytope dual. Le facettage n'a pas été étudié aussi intensément que la stellation. En 1858, Bertrand obtient les polyèdres étoilés (les solides de Kepler-Poinsot) en facettant l'icosaèdre et le dodécaèdre réguliers et convexes.
Coefficient matrixIn linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations. In general, a system with m linear equations and n unknowns can be written as where are the unknowns and the numbers are the coefficients of the system. The coefficient matrix is the m × n matrix with the coefficient a_ij as the (i, j)th entry: Then the above set of equations can be expressed more succinctly as where A is the coefficient matrix and b is the column vector of constant terms.
Facet (geometry)In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a face. To facet a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to stellation and may also be applied to higher-dimensional polytopes.