Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Demi-anneauEn mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente.
Provencevignette|Vue de la Mer Méditerranée depuis Toulon La Provence (prononcé dans une large partie de la France, en français de Provence; Provença/Prouvènço en occitan provençal, de l'ancien provençal Provensa, dérivant du latin provincia, "province") est une région historique et culturelle ainsi qu'un ancien État indépendant puis associé à la France. Elle correspond à l'actuelle région Provence-Alpes-Côte d'Azur et au sud de la région Auvergne-Rhône-Alpes.
Groupe de type de LieEn mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.
Interrogation (linguistique)En linguistique, l'interrogation est un acte de langage par laquelle l'émetteur d'un énoncé adresse au destinataire (réel ou fictif) de celui-ci une demande d'information portant sur son contenu. Une phrase interrogative est couramment appelée « question ». L'interrogation totale concerne la phrase entière et appelle une réponse totale, comme « oui », « non », « sûrement »... Une telle question totale porte en fait très souvent sur un élément partiel, mis en relief par divers moyens ou non : ex.
Yes–no questionIn linguistics, a yes–no question, also known as a binary question, a polar question, or a general question, is a question whose expected answer is one of two choices, one that provides an affirmative answer to the question versus one that provides a negative answer to the question. Typically, in English, the choices are either "yes" or "no". Yes–no questions present an exclusive disjunction, namely a pair of alternatives of which only one is a felicitous answer.
Aix-en-ProvenceAix-en-Provence (en provençal : Ais) est la capitale historique de la Provence. C'est aujourd'hui une commune française du Sud-Est de la France, dans le département des Bouches-du-Rhône, dont elle est sous-préfecture, en région Provence-Alpes-Côte d'Azur. Elle forme avec le pays d'Aix au sein de la Métropole Aix-Marseille Provence. Les habitants d'Aix s'appellent les Aixois en français (en provençal : lei sestian). Fondée en sous le nom d'Aquae Sextiae par la garnison romaine de Caius Sextius Calvinus, Aix devient par la suite la capitale du comté de Provence.
Negative libertyNegative liberty is freedom from interference by other people. Negative liberty is primarily concerned with freedom from external restraint and contrasts with positive liberty (the possession of the power and resources to fulfill one's own potential). The distinction originated with Bentham, was popularized by T.H. Green and Guido De Ruggiero, and is now best known through Isaiah Berlin's 1958 lecture "Two Concepts of Liberty". Stanford Encyclopedia of Philosophy describes negative liberty: "The negative concept of freedom .
Negative and positive rightsThe right of person A to obligate (enforce an obligation on) person B to refrain from (causal) physical interference with, in particular a purely interfering negligence tort against, some object or thing is called a negative right. So a negative right is a claim right. If a claim right is not a negative right, it is called a positive right. To every claim right of person A to obligate person B corresponds the obligation on B, so the obligation corresponding to a negative right is called a 'negative obligation' and an obligation corresponding to positive right a 'positive obligation'.