Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Série de DirichletEn mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Caractère de DirichletEn mathématiques, et plus précisément en arithmétique modulaire, un caractère de Dirichlet est une fonction particulière sur un ensemble de classes de congruences sur les entiers et à valeurs complexes. Elle a été utilisée par Dirichlet pour la démonstration de son théorème de la progression arithmétique. Dans cet article, n désigne un entier strictement positif et U le groupe des unités (Z/nZ) de l'anneau Z/nZ. Dans le corps C des nombres complexes, le conjugué d'un nombre c est noté .