Isotropic quadratic formIn mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.
Méthodes de calcul d'intégrales de contourEn analyse complexe, lintégration de contour est une technique de calcul d'intégrale le long de chemins sur le plan complexe L'intégration de contour est fortement liée au calculs de résidus, une méthode de calcul utilisée pour évaluer des intégrales curvilignes sur l'axe des réelles, que les outils de la théorie de l'intégration ne permettent pas de calculer par une simple analyse réelle Les méthodes d'intégration de contour incluent : l'intégration directe d'une fonction à valeurs complexes le long d'une c
Valuation ringIn abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D. Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring.
Fonction polylogarithmeLa fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction spéciale qui peut être définie pour tout s et z < 1 par : Le paramètre s et l'argument z sont pris sur l'ensemble C des nombres complexes. Les cas particuliers s = 2 et s = 3 sont appelés le polylogarithme d'ordre 2 ou dilogarithme et le polylogarithme d'ordre 3 ou trilogarithme respectivement. Le polylogarithme apparaît aussi dans la forme fermée de l'intégrale de la distribution de Fermi-Dirac et la distribution de Bose-Einstein et est quelquefois connue comme l'intégrale de Fermi-Dirac ou l'intégrale de Bose-Einstein.
RésultantEn mathématiques, le résultant, ou déterminant de Sylvester, est une notion qui s'applique à deux polynômes. Elle est utilisée en théorie de Galois, en théorie algébrique des nombres, en géométrie algébrique et dans bien d'autres domaines utilisant les polynômes. Le résultant de deux polynômes est un scalaire qui est nul si, et seulement si, les deux polynômes ont un facteur commun. Il peut être calculé à partir des coefficients des polynômes à l'aide d'un déterminant.
Calcul du volume de l'hypersphèreLa démonstration mathématique suivante pour le calcul du volume de l'hypersphère dépend des définitions précises de la sphère et de la boule. Le volume intérieur d'une sphère est le volume de la boule délimitée par la sphère. Nous intégrerons en coordonnées cartésiennes orthonormales dans l'espace euclidien. Notons le volume de la boule de rayon r en dimension n ≥ 1. Alors : parce que c'est la longueur d'un segment deux fois plus long que le rayon, i.e. La sphère de dimension 0 qui borde cette boule est constituée des deux points r et –r.
Galois geometryGalois geometry (so named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). More narrowly, a Galois geometry may be defined as a projective space over a finite field. Objects of study include affine and projective spaces over finite fields and various structures that are contained in them. In particular, arcs, ovals, hyperovals, unitals, blocking sets, ovoids, caps, spreads and all finite analogues of structures found in non-finite geometries.
ValuationEn mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
Décade (physique)Une décade est un facteur de 10 entre deux nombres. C'est un concept important dans les représentations graphiques de type logarithmiques, en particulier pour les fréquences, par exemple lorsque nous décrivons la réponse en fréquence d'un système électronique, tels qu'un amplificateur audio ou un filtre électronique. En physique, la signification est légèrement différente : elle représente l'intervalle compris entre 10D inclus et 10D+1 exclus, où D est un nombre réel quelconque.
Log probabilityIn probability theory and computer science, a log probability is simply a logarithm of a probability. The use of log probabilities means representing probabilities on a logarithmic scale , instead of the standard unit interval. Since the probabilities of independent events multiply, and logarithms convert multiplication to addition, log probabilities of independent events add. Log probabilities are thus practical for computations, and have an intuitive interpretation in terms of information theory: the negative of the average log probability is the information entropy of an event.