Entier naturelEn mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons... une carte, deux cartes, trois cartes... Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). L’étude des entiers naturels est l’objet de l’arithmétique, branche des mathématiques, constituée dès l'Antiquité grecque.
Arbre (mathématiques)En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour i
Inégalité de concentrationDans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit qu'une moyenne de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes.
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Entier relatifEn mathématiques, un entier relatif, un entier rationnel ou simplement un nombre entier est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3... tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3... L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif.
Bounds checkingIn computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking). A failed bounds check usually results in the generation of some sort of exception signal. As performing bounds checking during each use can be time-consuming, it is not always done.
Espace vectoriel ordonnéEn mathématiques, un espace vectoriel ordonné (ou espace vectoriel partiellement ordonné) est un espace vectoriel sur muni d'une relation d'ordre compatible avec sa structure. Il est dit totalement ordonné si l'ordre associé est un ordre total. Soit E un espace vectoriel sur le corps des réels et un préordre sur .
Entier quadratiqueEn mathématiques, un entier quadratique est un nombre complexe, racine d'un polynôme unitaire du second degré à coefficients entiers. La notion de nombre algébrique de degré inférieur ou égal à 2 est plus générale : elle correspond à un nombre complexe, racine d'un polynôme du second degré à coefficients seulement rationnels. Ces nombres particuliers disposent de propriétés algébriques.
Section commençanteEn mathématiques, et plus précisément en théorie des ordres, une section commençante (également appelée segment initial ou sous-ensemble fermé inférieurement) d'un ensemble ordonné (X,≤) est un sous-ensemble S de X tel que si x est dans S et si y ≤ x, alors y est dans S. Dualement, on appelle section finissante (ou sous-ensemble fermé supérieurement) un sous-ensemble F tel que si x est dans F et si x ≤ y, alors y est dans F.
Inégalité de HoeffdingEn théorie des probabilités, l’inégalité de Hoeffding est une inégalité de concentration concernant les sommes de variables aléatoires indépendantes et bornées. Elle tire son nom du mathématicien et statisticien finlandais Wassily Hoeffding. Il existe une version plus générale de cette inégalité, concernant une somme d'accroissements de martingales, accroissements là encore bornés : cette version plus générale est parfois connue sous le nom d'inégalité d'Azuma-Hoeffding.