Espace préhilbertienEn mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d'un produit scalaire. Cette notion généralise celles d'espace euclidien ou hermitien dans le cas d'une dimension quelconque, tout en conservant certaines bonnes propriétés géométriques des espaces de dimension finie grâce aux propriétés du produit scalaire, mais en perdant un atout de taille : un espace préhilbertien de dimension infinie n'est pas nécessairement complet. On peut cependant le compléter, pour obtenir un espace de Hilbert.
Produit directLa plupart des structures algébriques permettent de construire de façon très simple une structure produit sur le produit cartésien des ensembles sous-jacents. Plus généralement, . C'est le cas de la topologie produit dans la catégorie des espaces topologiques. Soient E un ensemble muni d'une loi de composition interne et F un ensemble muni d'une loi de composition interne . On peut définir une loi de composition interne sur le produit cartésien E×F de la façon suivante : Si et sont associatives, alors la loi est associative.
FeuilletageEn mathématiques, et plus précisément en géométrie différentielle, on dit qu'une variété est feuilletée, ou munie d'un feuilletage, si elle se décompose en sous-variétés de même dimension, appelées feuilles, qui localement, s'empilent comme les sous-espaces R × R. Formellement, un feuilletage sur est un atlas feuilleté, autrement dit une famille de cartes locales , où , et les changements de carte préservent cette décomposition : pour tout , . thumb|Schéma de changement de carte feuilletée.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Automorphisme de graphevignette|On peut définir deux automorphismes sur le graphe maison : l'identité et la permutation qui échange les deux « murs » de la « maison ». En mathématiques et en particulier en théorie des graphes, un automorphisme de graphe est une bijection de l'ensemble des sommets vers lui-même qui préserve l'ensemble des arêtes. On peut voir l'automorphisme de graphes comme un isomorphisme de graphes du graphe dans lui-même. On peut en général s'arranger pour mettre en évidence visuellement les automorphismes de graphes sous forme de symétries dans le tracé du graphe.
Construction engineeringConstruction engineering, also known as construction operations, is a professional subdiscipline of civil engineering that deals with the designing, planning, construction, and operations management of infrastructure such as roadways, tunnels, bridges, airports, railroads, facilities, buildings, dams, utilities and other projects. Construction engineers learn some of the design aspects similar to civil engineers as well as project management aspects.
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Liste de corps d'étatCet article constitue une liste rassemblant selon les répartitions communément usitées les corps de métier dans le domaine du génie civil, communément désignés sous l'appellation collective de corps d'état. Il s'agit d'appellations couramment rencontrées dans les allotissements des marchés de travaux.
Fonction localement intégrableEn mathématiques, plus précisément en théorie de l'intégration au sens de Lebesgue, une fonction à valeurs complexes définie sur un ouvert Ω de R est dite localement intégrable si sa restriction à tout compact de Ω est intégrable pour la mesure de Lebesgue λ. L'espace vectoriel de ces fonctions est noté L(Ω) et son quotient par le sous-espace des fonctions nulles presque partout est noté L(Ω).
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.