Robustesse (ingénierie)En ingénierie, la robustesse d'un système se définit comme la « stabilité de sa performance ». On distingue trois types de systèmes : les systèmes non-performants, qui ne remplissent pas les fonctionnalités attendues par l'utilisateur ; les systèmes performants fragiles, qui sont performants mais uniquement pour une plage réduite des paramètres internes ou externes ; les systèmes performants robustes, qui restent performants malgré des conditions externes présentant de larges variations d'amplitude (exemple : variation de température, d'adhérence au sol, de dispersion d'usinage.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Infini potentielL'infini potentiel est un dont le modèle le plus simple est l'infinité de la série des entiers naturels : 0, 1, 2, 3, 4... Chaque terme de cette série est fini, mais à chaque étape on peut atteindre un nouvel entier en lui ajoutant 1, ceci indéfiniment. L'infini potentiel n'est donc jamais atteint et correspond à une limite potentielle et non achevée. Il s'oppose à l'infini en acte, qui considère l'infini comme une entité achevée comme l'est l'ensemble des entiers naturels.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.