Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Endomorphisme autoadjointEn mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien.
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
Positionnement multidimensionnelLe positionnement multidimensionnel est un ensemble de techniques statistiques utilisées dans le domaine de la visualisation d'information pour explorer les similarités dans les données. Le positionnement multidimentionnel est un cas particulier d'analyse multivariée. Typiquement, un algorithme de positionnement multidimensionnel part d'une matrice de similarité entre tous les points pour affecter à chaque point une position dans un espace à dimensions. Pour = 2 ou = 3, les positions peuvent être visualisées sur un plan ou dans un volume par un nuage de points.
Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.
Opérateur (physique)Un opérateur est, en mécanique quantique, une application linéaire d'un espace de Hilbert dans lui-même. Le terme est une spécialisation du concept mathématique d'opérateur. Une observable est un opérateur hermitien. En mécanique classique, le mouvement des particules (ou d'un système de particules) est complètement déterminé par le Lagrangien ou, de façon équivalente, l'Hamiltonien , une fonction des coordonnées généralisées q, vitesse généralisée et son moment conjugué : Si ou est indépendant des coordonnées généralisées , donc que et ne changent pas en fonction de , le moment conjugué de ces coordonnées sera conservé (c'est une partie du théorème de Noether, et l'invariance du mouvement en respect de la coordonnée est une symétrie).
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Espace colonne et espace des rangéesEn algèbre linéaire, lespace colonne (aussi appelé espace des colonnes ou ) d'une matrice A est l'espace engendré par toutes les combinaisons linéaires de ses vecteurs colonne. L'espace colonne d'une matrice est l'image de lapplication linéaire correspondante. Soit un corps. L'espace colonne d'une matrice de taille à éléments dans est un sous-espace vectoriel de . La dimension d'un espace colonne est appelé le rang d'une matrice et est au plus égal au minimum de et . Une définition des matrices sur un anneau est également possible.