Intégrateur symplectiqueUn intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Trapezoidal rule (differential equations)In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method and a linear multistep method. Suppose that we want to solve the differential equation The trapezoidal rule is given by the formula where is the step size.
Méthode de SimpsonEn analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = . Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Méthode des trapèzesEn analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles. Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T : En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. ()..
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Midpoint methodIn numerical analysis, a branch of applied mathematics, the midpoint method is a one-step method for numerically solving the differential equation, The explicit midpoint method is given by the formula the implicit midpoint method by for Here, is the step size — a small positive number, and is the computed approximate value of The explicit midpoint method is sometimes also known as the modified Euler method, the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a sy
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.