Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Somme de RiemannEn mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Moyenne arithmético-géométriqueLa moyenne arithmético-géométrique de deux réels positifs est une valeur intermédiaire obtenue comme limite de deux suites adjacentes satisfaisant une relation de récurrence qui reprend les formules de moyennes arithmétique et géométrique. La convergence quadratique de ces suites permet une approximation rapide de la moyenne arithmético-géométrique qui est notamment associée à la longueur d'une ellipse en fonction des longueurs de ses axes.
Équation différentielle raideUne équation différentielle raide est une équation différentielle dont la sensibilité aux paramètres va rendre difficile la résolution par des méthodes numériques explicites. Plusieurs explications, aussi bien physiques que mathématiques, peuvent permettre d'appréhender la notion de raideur, qui reste difficilement formulable. Il existe plusieurs définitions formelles de la raideur d'une équation différentielle. Une des plus simples est celle de Curtiss et Hirschfelder : Une formulation plus mathématique passe par le comportement des valeurs propres liés au système : où est le spectre de .
Intégration de VerletLintégration de Verlet est un schéma d'intégration qui permet de calculer la trajectoire de particules en simulation de dynamique moléculaire. Cette méthode offre une meilleure stabilité que la plus simple méthode d'Euler (créée au ), de même que d'importantes propriétés dans les systèmes physiques, telles que la réversibilité dans le temps et la conservation de propriété. À première vue, il peut sembler naturel de calculer les trajectoires en utilisant la méthode d'Euler. Cependant, ce type d'intégration souffre de nombreux problèmes.
Extrapolation de RichardsonEn analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π. Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Trapèzethumb|Exemple de trapèze. Un trapèze est un quadrilatère possédant deux côtés opposés parallèles. Ces deux côtés parallèles sont appelés bases. Avec cette définition, les quadrilatères ABCD et ABDC de la figure sont tous deux des trapèzes (dont les côtés (AB) et (CD) sont parallèles). Certains auteurs imposent comme condition supplémentaire la convexité du quadrilatère, ce qui revient à exclure les « trapèzes croisés » tels que ABDC. Un quadrilatère convexe est un trapèze si et seulement s’il possède une paire d’angles consécutifs de somme égale à 180°, soit π radians.
Formulation implicite ou explicite d'un problème de dynamiqueEn simulation numérique, un problème dépendant du temps peut être formulé de manière implicite ou explicite. Un problème dépendant du temps décrit une situation qui évolue ; le système est modélisé à différents instants t discrets appelés « pas de temps ». La méthode explicite consiste à déterminer la solution à t + Δt en fonction de la valeur de la fonction en t. Si la fonction à évaluer s'appelle y(t), alors le problème se formule de la manière suivante : y(t + Δt) = F(y(t)). La méthode d'Euler est une méthode explicite.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.