DistributivitéEn mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16.
Abstract simplicial complexIn combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).
Algèbre involutiveEn mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.
History of algebraAlgebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).
Nerf (théorie des catégories)En mathématiques, et plus particulièrement en théorie des catégories, le nerf d'une petite catégorie est un ensemble simplicial construit à partir des objets et des morphismes de . La réalisation géométrique de cet ensemble simplicial est un espace topologique, appelé l'espace classifiant de la catégorie . Ces objets étroitement liés peuvent fournir des informations sur certains catégories familières et utiles à l'aide de la topologie algébrique, le plus souvent la théorie de l'homotopie.
Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.
N-connexitéDans le domaine mathématique de la topologie algébrique et plus précisément en théorie de l'homotopie, la n-connexité est une généralisation de la connexité par arcs (cas n = 0) et de la connexité simple (cas n = 1) : un espace topologique est dit n-connexe si son homotopie est triviale jusqu'au degré n et une application continue est n-connexe si elle induit des isomorphismes en homotopie « presque » jusqu'au degré n. Pour tout entier naturel n, un espace X est dit n-connexe s'il est connexe par arcs et si ses n premiers groupes d'homotopie π(X) (0 < k ≤ n) sont triviaux.
Particular point topologyIn mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Algèbre graduéevignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).