Propriété universelleEn mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels.
Cycle (géométrie algébrique)En géométrie algébrique, les cycles sont des combinaisons formelles de fermés irréductibles d'un schéma donné. Le quotient du groupe des cycles par une relation d'équivalence convenable aboutit aux qui sont des objets fondamentaux. Tous les schémas considérés ici seront supposés noethériens de dimension finie. On fixe un schéma qu'on supposera noethérien de dimension finie . Pour tout entier positif ou nul , on appelle -cycle irréductible (resp. -cocycle irréductible) de un fermé irréductible de dimension (resp.
Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Matrice de permutationUne matrice de permutation est une matrice carrée qui vérifie les propriétés suivantes : les coefficients sont 0 ou 1 ; il y a un et un seul 1 par ligne ; il y a un et un seul 1 par colonne. Ainsi : est une matrice de permutation. Les matrices de permutations carrées de taille n sont en bijection avec les permutations de l'ensemble {1,2,...n}. Si σ est une telle permutation, la matrice correspondante est de terme général Cette bijection est un morphisme de groupes : En utilisant cette identité avec deux permutations inverses l'une de l'autre, on obtient le fait qu'une matrice de permutation est inversible, et que son inverse est la matrice de la permutation inverse.
Théorème de représentation de Stone pour les algèbres de BooleEn mathématiques, le théorème de représentation de Stone pour les algèbres de Boole établit une équivalence entre la catégorie des algèbres de Boole et celle des espaces de Stone (espaces compacts totalement discontinus). Cette correspondance a été établie par Marshall Stone en 1936. Soit A une algèbre de Boole. On lui associe l'ensemble S(A) des morphismes , appelé « l'espace de Stone associé à A ».
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.
Associated primeIn abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M (word play between the notation and the fact that an associated prime is an annihilator). In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings.
Completely distributive latticeIn the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices.
Espace topologique irréductibleEn topologie, un espace irréductible est un espace topologique non vide qui ne peut pas se décomposer en (c'est-à-dire s'écrire comme réunion de) deux parties fermées strictement plus petites. Ce type d'espaces apparaît (et est utilisé) surtout en géométrie algébrique, où l'irréductibilité est une des propriétés topologiques basiques.
Suite géométriqueEn mathématiques, une suite géométrique est une suite de nombres dans laquelle chaque terme permet de déduire le suivant par multiplication par un facteur constant appelé raison. Ainsi, une suite géométrique a la forme suivante : La définition peut s'écrire sous la forme d'une relation de récurrence, c'est-à-dire que pour chaque entier naturel n : Le qualificatif « géométrique » réfère au fait que, dans une suite géométrique à termes positifs, un terme quelconque (à l'exception du premier) est égal à la moyenne géométrique du terme qui le précède et de celui qui lui succède.