Corps résiduelUn corps résiduel d'un anneau commutatif R est le quotient de R par un idéal maximal. S'agissant d'un idéal maximal, l'anneau issu du quotient a une structure de corps. Le concept est avant tout utilisé en géométrie algébrique et en théorie algébrique des nombres, où l'on travaille le plus souvent avec un anneau local ou un anneau de valuation discrète, qui ne possède qu'un idéal maximal et permet donc de parler « du » corps résiduel. On peut opérer le quotient sur un anneau non commutatif, mais on obtient alors un corps gauche.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.
Anneau local régulierEn mathématiques, les anneaux réguliers forment une classe d'anneaux très utile en géométrie algébrique. Ce sont des anneaux qui localement sont les plus proches possibles des anneaux de polynômes sur un corps. Soit un anneau local noethérien d'idéal maximal . Soit son espace tangent de Zariski qui est un espace vectoriel de dimension finie sur le corps résiduel . Cette dimension est minorée par la dimension de Krull de l'anneau . On dit que est régulier s'il y a égalité entre ces deux dimensions : Par le lemme de Nakayama, cela équivaut à dire que est engendré par éléments.
Noyau (algèbre)En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme.
Endomorphismevignette|Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme. En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.
Covering groupIn mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .