Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.
Code préfixeUn code préfixe (ou code instantané) est un code ayant la particularité de ne posséder aucun mot du code ayant pour préfixe un autre mot du code. Autrement dit, aucun mot du code (ou symbole) d'un code préfixe ne peut se prolonger pour donner un autre mot du code (ou symbole). C'est une propriété souvent recherchée pour les codes à longueur variable, afin de pouvoir les décoder lorsque plusieurs symboles sont concaténés les uns aux autres sans qu'il soit nécessaire d'utiliser des séparateurs (les séparateurs rendent préfixes des codes non préfixes).
Code de Hamming (7,4)En théorie des codes, le Code de Hamming (7,4) est un code correcteur linéaire binaire de la famille des codes de Hamming. À travers un message de sept bits, il transfère quatre bits de données et trois bits de parité. Il permet la correction d'un bit erroné. Autrement dit, si, sur les sept bits transmis, l'un d'eux au plus est altéré (un « zéro » devient un « un » ou l'inverse), alors il existe un algorithme permettant de corriger l'erreur. Il fut introduit par Richard Hamming (1915-1998) en 1950 dans le cadre de son travail pour les laboratoires Bell.
Expander codeIn coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code.
Distance de LevenshteinLa 'distance de Levenshtein' est une distance, au sens mathématique du terme, donnant une mesure de la différence entre deux chaînes de caractères. Elle est égale au nombre minimal de caractères qu'il faut supprimer, insérer ou remplacer pour passer d’une chaîne à l’autre. Elle a été proposée par Vladimir Levenshtein en 1965. Elle est également connue sous les noms de distance d'édition ou de déformation dynamique temporelle, notamment en reconnaissance de formes et particulièrement en reconnaissance vocale.
Coordonnées barycentriquesEn géométrie affine, les coordonnées barycentriques d'un point par rapport à un repère barycentrique sont une famille de poids permettant de définir ce point comme un barycentre. Repère affine Une famille finie (P,...,P) de points d'un espace affine E est dite affinement libre, ou encore ces points sont dits affinement indépendants, quand aucun des points P n'appartient au sous-espace affine engendré par les k autres points. Dans le cas contraire il est dit affinement lié.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Distance d'édition sur les arbresEn informatique théorique, en biochimie et aussi dans des applications, en vision par ordinateur par exemple, la distance d'édition d'arbres (en anglais tree edit distance) est une mesure qui évalue, en termes de nombre de transformations élémentaires, le nombre d'opérations nécessaires et leur coût pour passer d'un arbre à un autre. C'est une notion qui étend, aux arbres, la distance d'édition (ou distance de Levenshtein) entre chaînes de caractères.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.