Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Antenne radioélectriquethumb|Antenne rideau HF de télécommunication. thumb|Antennes de réception de la télévision. thumb|Montage d'une antenne de station terrienne au Nicaragua. thumb|upright=1.8|Un diagramme animé d'une antenne dipôle recevant une onde radio. En radioélectricité, une antenne est un dispositif permettant de rayonner (émetteur) ou de capter (récepteur) les ondes électromagnétiques. L'antenne est un élément fondamental dans un système radioélectrique, et ses caractéristiques de rendement, gain, diagramme de rayonnement influencent directement les performances de qualité et de portée du système.
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.
Television antennaA television antenna (TV aerial) is an antenna specifically designed for use with a television receiver (TV) to receive over-the-air broadcast television signals from a television station. Television reception is dependent upon the antenna as well as the transmitter. Terrestrial television is broadcast on frequencies from about 47 to 250 MHz in the very high frequency (VHF) band, and 470 to 960 MHz in the ultra high frequency (UHF) band in different countries.
Antenne dipolaireL'antenne dipolaire, élaborée par Heinrich Rudolph Hertz vers 1886, est une antenne constituée de deux brins métalliques, alimentée en son milieu et destinée à transmettre ou recevoir de l'énergie électromagnétique. Ce type d'antenne est le plus simple à étudier d'un point de vue analytique. 220px|thumb|Antenne dipolaire. thumb|300px|Une antenne dipolaire recevant une onde radio. thumb|Schéma géométrique d'un dipôle élémentaire.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Antenne rideauthumb|Antennes rideaux HF de radiodiffusion à Wertachtal, Bavière thumb|Antenne rideau HF de quatre fois quatre éléments dipôle à Hörby, Suède Une Antenne rideau est une antenne directive pour les ondes courtes (décamétriques) qu’on utilise pour des émetteurs radio. L’objectif des services de radiodiffusion en ondes décamétriques est la couverture d’une zone géographique étendue. Pour cela, il faut avoir une puissance d’émission suffisante et une fréquence adaptée à la prévision ionosphérique.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Racine carrée d'une matriceEn mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. Soient un entier naturel n non nul et M une matrice carrée d'ordre n à coefficients dans un anneau A. Un élément R de M(A) est une racine carrée de M si R = M. Une matrice donnée peut n'admettre aucune racine carrée, comme un nombre fini voire infini de racine carrées. Dans M(R) : est une racine carrée de les (pour tout réel x) sont des racines carrées de n'a pas de racine carrée R, car cela imposerait (mais elle en a dans M(C)).