Taux de changeLe taux de change d'une devise (une monnaie) est le coût (autrement dit le prix) de cette devise par rapport à une autre. On parle aussi de la « parité d'une monnaie ». Mais ce dernier mot constitue un faux-ami très gênant avec l'anglais « parity » qui indique une égalité absolue. Les taux de change, cotés sur les marchés des changes, varient en permanence ; ils varient également en fonction de la place de cotation Par exemple, le taux de change de l'euro en dollar américain sera noté : EUR/USD (ou EURUSD) = 1,3120 (ce qui signifie que vaut américain), alors que le taux de change du dollar en yen sera noté USD/JPY (ou USDJPY) = 101,2954.
Forme de connexionEn géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Programme d'ErlangenLe programme d'Erlangen est un programme de recherche mathématique publié par le mathématicien allemand Felix Klein en 1872, dans son Étude comparée de différentes recherches récentes en géométrie. L'objectif est de comparer les différentes géométries apparues au cours du pour en dégager les points de similitude : on peut ainsi plus clairement distinguer la géométrie affine, la géométrie projective, la géométrie euclidienne, la géométrie non euclidienne au travers d'une vision globale.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Régime de changeLe régime de change, ou régime de taux de change, d’une zone monétaire fait partie de la politique monétaire adoptée par les autorités monétaires, qui détermine en grande partie le comportement du taux de change de la monnaie vis-à-vis des autres devises (ou d'une devise en particulier). Changes flottants Le régime de change flottant est basé sur la détermination du cours de change de chaque monnaie par rapport aux autres par la confrontation de l'offre et la demande des diverses devises sur le marché des changes (appelé communément "forex") sans intervention des autorités monétaires.
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Law of demandIn microeconomics, the law of demand is a fundamental principle which states that there is an inverse relationship between price and quantity demanded. In other words, "conditional on all else being equal, as the price of a good increases (↑), quantity demanded will decrease (↓); conversely, as the price of a good decreases (↓), quantity demanded will increase (↑)". Alfred Marshall worded this as: "When we say that a person's demand for anything increases, we mean that he will buy more of it than he would before at the same price, and that he will buy as much of it as before at a higher price".
DemandIn economics, demand is the quantity of a good that consumers are willing and able to purchase at various prices during a given time. The relationship between price and quantity demand is also called the demand curve. Demand for a specific item is a function of an item's perceived necessity, price, perceived quality, convenience, available alternatives, purchasers' disposable income and tastes, and many other options. Innumerable factors and circumstances affect a consumer's willingness or to buy a good.