Théorème de Helmholtz-HodgeEn mathématiques et en physique, dans le domaine de l’analyse vectorielle, le théorème de Helmholtz-Hodge, également appelé théorème fondamental du calcul vectoriel, assure qu'un champ vectoriel se décompose en une composante « longitudinale » (irrotationnelle) et une composante « transverse » (solénoïdale), soit la somme du gradient d’un champ scalaire et du rotationnel d’un champ vectoriel. Ce résultat possède des applications importantes en électromagnétisme et en mécanique des fluides ; il est également exploité en sismologie.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
RotationnelL'opérateur rotationnel est un opérateur différentiel aux dérivées partielles qui, à un champ vectoriel tridimensionnel, noté ou , fait correspondre un autre champ noté au choix : ou bien ou bien ou bien ou bien selon les conventions de notations utilisées pour les vecteurs. vignette|Exemple d'un champ de vecteurs ayant un rotationnel uniforme, analogue à un fluide tournant autour d'un point central.
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Dualité de HodgeEn algèbre linéaire, l'opérateur de Hodge, introduit par William Vallance Douglas Hodge, est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge. En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés.
Projection cartographiqueLa projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte. L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter.
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.
Divergence (analyse vectorielle)vignette|Les lignes bleues représentant les gradients de couleur, du plus clair au plus foncé. L'opérateur divergence permet de calculer, localement, la variation de ce gradient de couleur vignette|Illustration de la divergence d'un champ vectoriel, ici champ de vitesse converge à gauche et diverge à droite. En géométrie, la divergence d'un champ de vecteurs est un opérateur différentiel mesurant le défaut de conservation du volume sous l'action du flot de ce champ.