Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Matrice normaleEn algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si A⋅A* = A*⋅A. Toutes les matrices hermitiennes, ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales. Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de UAU sont alors les valeurs propres de A.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Matrice adjointeEn algèbre linéaire, une matrice adjointe (aussi appelée matrice transconjuguée) d'une matrice M à coefficients complexes est la matrice transposée de la matrice conjuguée de M. Dans le cas particulier où M est à coefficients réels, sa matrice adjointe est donc simplement sa matrice transposée.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Skew-Hermitian matrixNOTOC In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation where denotes the conjugate transpose of the matrix . In component form, this means that for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation.
Radioactivité αLa radioactivité alpha (ou rayonnement alpha, symbolisé α) est le rayonnement provoqué par la désintégration alpha, soit la forme de désintégration radioactive où un noyau atomique X éjecte une et se transforme en un noyau Y de nombre de masse A diminué de 4 et de numéro atomique Z diminué de 2. En 1898, Ernest Rutherford découvre que la radioactivité émise par un minerai d'uranium est un mélange de deux phénomènes distincts qu'il appelle radioactivité α et radioactivité β.