Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Solution (chimie)Une solution, en chimie, est un mélange homogène (constitué d'une seule phase) résultant de la dissolution d'un ou plusieurs soluté(s) (espèce chimique dissoute) dans un solvant. Les molécules (ou les ions) de soluté sont alors solvatées et dispersées dans le solvant. La solution liquide est l'exemple le plus connu. Une solution ayant l'eau comme solvant est appelée solution aqueuse. Il est possible de mettre en solution : un liquide dans un autre : limité par la miscibilité des deux liquides ; un solide dans un liquide : limité par la solubilité du solide dans le solvant, au-delà de laquelle le solide n'est plus dissous.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Ordre monomialEn mathématiques, un ordre monomial est un ordre total sur l'ensemble des monômes d'un anneau de polynômes donné, compatible avec la multiplication, c'est-à-dire : Pour tout monôme , si deux monômes et satisfont selon l'ordre monomial, alors . Les ordres monomiaux sont le plus souvent utilisés pour le calcul des bases de Gröbner et la division multivariée. En particulier, la propriété dêtre une base de Gröbner est toujours relative à un ordre monomial spécifique.
GMRESEn mathématique, la généralisation de la méthode de minimisation du résidu (ou GMRES, pour Generalized minimal residual) est une méthode itérative pour déterminer une solution numérique d'un système d'équations linéaires. La méthode donne une approximation de la solution par un vecteur appartenant à un sous-espace de Krylov avec un résidu minimal. Pour déterminer ce vecteur, on utilise la . La méthode GMRES fut développée par Yousef Saad et Martin H. Schultz en 1986.