ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).
Sélection de groupevignette|En 1994, et , propose la théorie de la sélection multi-niveaux, illustrée par l'emboîtement de poupées russes. La sélection naturelle pourrait s'exercer au niveau du gène, de la cellule, de l'organisme ou du groupe La sélection de groupe est une généralisation de la théorie de l'évolution par voie de sélection naturelle de Darwin, selon laquelle un groupe d'organismes qui coopèrent fonctionne mieux, à terme, qu'un groupe dont les membres sont en compétition.
Méthode de SimpsonEn analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = . Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Méthode des trapèzesEn analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles. Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T : En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. ()..
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Problèmes du prix du millénaireLes problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en . La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En , six des sept problèmes demeurent non résolus. Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirmée ni rejetée faute d'une démonstration mathématique suffisamment rigoureuse ; soit définir et expliciter l'ensemble des solutions de certaines équations.
Décomposition en produit de facteurs premiersvignette|Décomposition du nombre 864 en facteurs premiers En mathématiques et plus précisément en arithmétique, la décomposition en produit de facteurs premiers, aussi connue comme la factorisation entière en nombres premiers ou encore plus couramment la décomposition en facteurs premiers, consiste à chercher à écrire un entier naturel non nul sous forme d'un produit de nombres premiers. Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 3 × 5, soit 3 × 3 × 5.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.