FeuilletageEn mathématiques, et plus précisément en géométrie différentielle, on dit qu'une variété est feuilletée, ou munie d'un feuilletage, si elle se décompose en sous-variétés de même dimension, appelées feuilles, qui localement, s'empilent comme les sous-espaces R × R. Formellement, un feuilletage sur est un atlas feuilleté, autrement dit une famille de cartes locales , où , et les changements de carte préservent cette décomposition : pour tout , . thumb|Schéma de changement de carte feuilletée.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
LinéaritéLe concept de linéarité est utilisé dans le domaine des mathématiques et dans le domaine de la physique, et par extension dans le langage courant. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine. Il ne faut cependant pas confondre linéarité et proportionnalité, car la proportionnalité n'est qu'un cas particulier de la linéarité.
Automorphisme de graphevignette|On peut définir deux automorphismes sur le graphe maison : l'identité et la permutation qui échange les deux « murs » de la « maison ». En mathématiques et en particulier en théorie des graphes, un automorphisme de graphe est une bijection de l'ensemble des sommets vers lui-même qui préserve l'ensemble des arêtes. On peut voir l'automorphisme de graphes comme un isomorphisme de graphes du graphe dans lui-même. On peut en général s'arranger pour mettre en évidence visuellement les automorphismes de graphes sous forme de symétries dans le tracé du graphe.
Fonction localement intégrableEn mathématiques, plus précisément en théorie de l'intégration au sens de Lebesgue, une fonction à valeurs complexes définie sur un ouvert Ω de R est dite localement intégrable si sa restriction à tout compact de Ω est intégrable pour la mesure de Lebesgue λ. L'espace vectoriel de ces fonctions est noté L(Ω) et son quotient par le sous-espace des fonctions nulles presque partout est noté L(Ω).
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Intégration par partiesEn mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Forme différentielle de degré unEn géométrie différentielle, les formes différentielles de degré un, ou 1-formes (différentielles), sont les exemples les plus simples de formes différentielles. Une 1-forme différentielle sur un ouvert d'un espace vectoriel normé est un champ de formes linéaires c'est-à-dire une application, qui, à chaque point de l'espace, fait correspondre une forme linéaire. Plus généralement, on peut définir de telles formes linéaires sur une variété différentielle.
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.