Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
AcoustiqueL’acoustique est la science du son. La discipline a étendu son domaine à l'étude de toute onde mécanique dans tout fluide, où un ébranlement se propage presque exclusivement en onde longitudinale ; le calcul de ces ondes selon les caractéristiques du milieu s'applique aussi bien pour l'air aux fréquences audibles que pour tout milieu fluide homogène et toute fréquence, y compris infrasons et ultrasons. On parle de vibroacoustique quand l'étude se porte sur l'interaction entre solides, où existent des ondes transversales, et fluides.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Room acousticsRoom acoustics is a subfield of acoustics dealing with the behaviour of sound in enclosed or partially-enclosed spaces. The architectural details of a room influences the behaviour of sound waves within it, with the effects varying by frequency. Acoustic reflection, diffraction, and diffusion can combine to create audible phenomena such as room modes and standing waves at specific frequencies and locations, echos, and unique reverberation patterns.