Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Mode normaldroite|vignette|248px|Visualisation d'un mode normal de vibration d'une peau de tambour, constitué d'une membrane circulaire souple attachée rigidement sur la totalité de ses bords. . Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état d'équilibre ; une fréquence naturelle de vibration est alors associée à cette forme.
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Reconnexion magnétiquedroite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
Onde d'Alfvénvignette|Illustration des champs dans les ondes magnétohydrodynamiques. La partie supérieure montre comment les ondes d'Alfvén peuvent être considérées comme des ondulations des lignes de champ magnétique ; la partie inférieure montre comment le champ magnétique est densifié et aminci dans une onde magnétosonique. Symboles : B0 est le champ magnétique non perturbé dans le plasma ; k est le vecteur d'onde, indiquant la direction de propagation de l'onde ; B1, E1, v1 et j1 sont les perturbations causées par l'onde dans le champ magnétique, le champ électrique, la vitesse du plasma et le courant électrique, respectivement.
Équation différentielle raideUne équation différentielle raide est une équation différentielle dont la sensibilité aux paramètres va rendre difficile la résolution par des méthodes numériques explicites. Plusieurs explications, aussi bien physiques que mathématiques, peuvent permettre d'appréhender la notion de raideur, qui reste difficilement formulable. Il existe plusieurs définitions formelles de la raideur d'une équation différentielle. Une des plus simples est celle de Curtiss et Hirschfelder : Une formulation plus mathématique passe par le comportement des valeurs propres liés au système : où est le spectre de .
Tokamakthumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Cycle limiteDans le domaine des systèmes dynamiques, un cycle limite, ou cycle-limite sur un plan ou une variété bidimensionnelle est une trajectoire fermée dans l'espace des phases, telle qu'au moins une autre trajectoire spirale à l'intérieur lorsque le temps tend vers . Ces comportements s'observent dans certains systèmes non linéaires. Si toutes les trajectoires voisines approchent le cycle limite lorsque t , on parle de cycle limite stable ou attractif. Si en revanche cela se produit lorsque t , on parle de cycle limite instable ou non attractif.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Génération de seconde harmoniquevignette|Niveaux d'énergie impliqués dans la création de SHG La génération de seconde harmonique (GSH ou SHG en anglais, également appelé doublage de fréquence) est un phénomène d'optique non linéaire dans lequel des photons interagissant avec un matériau non linéaire sont combinés pour former de nouveaux photons avec le double de l'énergie, donc avec le double de la fréquence ou la moitié de la longueur d'onde des photons initiaux. La génération de seconde harmonique, en tant qu'effet optique non linéaire d'ordre pair, n'est autorisée que dans les milieux sans centre d'inversion .