Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Décomposition primaireLa décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Vecteur de WittLes vecteurs de Witt sont des objets mathématiques, généralement décrits comme des suites infinies de nombres (ou plus généralement d'éléments d'un anneau). Ils ont été introduits par Ernst Witt en 1936, afin de décrire les extensions non ramifiées des corps de nombres p-adiques. Ces vecteurs sont dotés d'une structure d'anneau ; on parle donc de l’anneau des vecteurs de Witt. Ils apparaissent aujourd'hui dans plusieurs branches de la géométrie algébrique et arithmétique, en théorie des groupes et en physique théorique.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.