Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Singular integral operators of convolution typeIn mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
Équation d'Euler-LagrangeL’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. E désignera un espace vectoriel normé, [t , t] un intervalle réel, et l'espace affine des fonctions x : [t , t] → E de classe C telles que , où x , x sont deux vecteurs fixés de E.
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Multiplicateur de FourierEn théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Joseph-Louis LagrangeJoseph Louis de Lagrange (en italien Giuseppe Luigi Lagrangia ou aussi Giuseppe Ludovico De la Grange Tournier), né à Turin le de parents français descendants de Descartes et mort à Paris le , est un mathématicien, mécanicien et astronome italien, originaire du royaume de Sardaigne et naturalisé français. À l'âge de trente ans, il quitte Turin et va séjourner à Berlin pendant vingt-et-un ans. Ensuite, il s'installe pour ses vingt-six dernières années à Paris où il prend la nationalité française en 1802.
Opérateur pseudo-différentielEn analyse mathématique, un opérateur pseudo-différentiel est une extension du concept familier d'opérateur différentiel, permettant notamment l'inclusion d'ordres de dérivation non entiers. Ces opérateurs pseudo-différentiels sont abondamment utilisés dans la théorie des équations aux dérivées partielles et en théorie quantique des champs. On reprend ci-dessous les notations introduites dans l'article opérateur différentiel. Rappelons qu'un opérateur différentiel linéaire d'ordre s'écrit : où les , appelées coefficients de l'opérateur , sont des fonctions des variables d'espace .
Théorème d'uniformisation de RiemannEn mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). Théorème d'uniformisation Transformation conforme Catégorie:Surface